UAS ESP ENGLISH
Writer : Willy Riwaldi (2220201047)
Editor : Willy Riwaldi (2220201047)
Reviewer : Irfandi Bagus Fahrezi
List of
Activities in ESP for Electrical Engineering
1. Short
Article about Electrical Engineering
2. 5W+1H
Sentences
3. Verbal
and Nominal Sentences
4. Tenses
and It’s Pattern
5. Active
and Passive Construction
6. List
of Vocabulary
7.
Translation into Indonesia
8. Reason
Why Writer Uses Tenses
Signals and Systems
The study of signals and
systems is considered to be a classic subject in the curriculum of most
engineering schools throughout the world. The theory of signals and systems is
a coherent and elegant collection of mathematical results that date back to the
work of Fourier and Laplace and many other famous mathematicians and engineers.
Signals and systems theory has proven to be an extremely valuable tool for the
past 70 years in many fields of science and engineering, including power
systems, automatic control, communications, circuit design, filtering, and
signal processing. Fantastic advances in these fields
have brought revolutionary changes into our lives.
The United States Department of Defense in 1969,
through the ARPA project that developed a network related to the ARPANET
(Advanced Research Project Agency Network), where they demonstrated how to
hardware and software.
At the heart of signals and systems theory is mankind’s
historical curiosity and need to analyze the behavior of physical systems with
simple mathematical models describing the cause-and-effect relationship between
quantities. For example, Isaac Newton discovered the second law of rigid-body
dynamics over 300 years ago and described it mathematically as a relationship
between the resulting force applied on a body (the input) and its acceleration
(the output), from which one can also obtain the body’s velocity and position
with respect to time. The development of differential
calculus by Leibniz and Newton provided a powerful tool for modeling physical
systems in the form of differential equations implicitly relating the input variable
to the output variable. A fundamental issue in science and engineering is
to predict what the behavior, or output response, of a system will be for a given
input signal. Where as science may seek to describe natural phenomena modeled
as input-output systems, engineering seeks to design systems by modifying and
analyzing such models. This issue is recurrent in the
design of electrical or mechanical systems, where a system’s output signal must
typically respond in an appropriate way to selected input signals. In this
case, a mathematical input-output model of the system would be analyzed to
predict the behavior of the output of the system. For example, in the design
of a simple resistor-capacitor electrical circuit to be used as a filter, the
engineer would first specify the desired attenuation of a sinusoidal input
voltage of a given frequency at the output of the filter. Then, the design
would proceed by selecting the appropriate resistance R and capacitance C in
the differential equation model of the filter in order to achieve the
attenuation specification. The filter can then be built using actual electrical
components. A signal is defined as a function of time representing the
evolution of a variable. Certain types of input and output signals have special
properties with respect to linear time-invariant systems. Such signals include sinusoidal and exponential functions of time.
These signals can be linearly combined to form virtually any other signal,
which is the basis of the Fourier series representation of periodic signals and
the Fourier transform representation of aperiodic signals. The Fourier
representation opens up a whole new interpretation of signals in terms of their
frequency contents called the frequency spectrum. Furthermore, in the frequency
domain, a linear time-invariant system acts as a filter on the frequency
spectrum of the input signal, attenuating it at some frequencies while
amplifying it at other frequencies. This effect is called the frequency
response of the system. These frequency domain concepts are fundamental in
electrical engineering, as they underpin the fields of communication systems,
analog and digital filter design, feedback control, power engineering, etc.
Well-trained electrical and computer engineers think of signals as being in the
frequency domain probably just as much as they think of them as functions of
time. The Fourier transform can be further generalized to the Laplace transform
in continuous-time and the z-transform in discrete-time. The idea here is to
define such transforms even for signals that tend to infinity with time. We
chose to adopt the notation X( jω), instead of X(ω) or X( f ), for the Fourier
transform of a continuous-time signal x(t). This is consistent with the Laplace
transform of the signal denoted as X(s), since then X( jω) = X(s)|s = jω. The
same remark goes for the discrete-time Fourier transform: X(ejω) = X(z)|z = e
jω.
Signals
What is Signal?
Signal is a time varying physical phenomenon which is intended to convey
information.
OR
Signal is a function
of time.
OR
Signal is a function
of one or more independent variables, which contain some information.
A signal is a function of one or more variables that conveys information
about some (usually physical) phenomenon. Some examples of signals include:
• a human voice
• a voltage in an
electronic circuit
• the temperature of
a room controlled by a thermostat system
• the position,
velocity, and acceleration of an aircraft
• the acceleration
measured by an accelerometer in a cell phone
• the force measured
by a force sensor in a robotic system
• the electromagnetic
waves used to transmit information in wireless computer networks
• a digitized photograph
• a digitized music
recording
• the evolution of a
stock market index over time
v Classification
of Signals
Signals can be classified based on the number of
independent variables with which they are associated. A signal that is a function of only one variable is said to be one
dimensional. Similarly, a signal that is a function of two or more variables is
said to be multi-dimensional. Human speech is an example of a one-dimensional
signal. In this case, we have a signal associated with fluctuations in air
pressure as a function of time. An example of a two-dimensional signal is a
monochromatic image. In this case, we have a signal that corresponds to a
measure of light intensity as a function of horizontal and vertical position. A
signal can also be classified on the basis of whether it is a function of
continuous or discrete variables. A signal that is a function of continuous
variables (e.g., a real variable) is said to be continuous time. Similarly, a
signal that is a function of discrete variables (e.g., an integer variable) is
said to be discrete time. Although the independent variable need not represent
time, for matters of convenience, much of the terminology is chosen as if this
were so.
x( t) x[n]
For example, a digital image (which consists of a rectangular array of
pixels) would be referred to as a discrete-time signal, even though the
independent variables (i.e., horizontal and vertical position) do not actually
correspond to time. If a signal is a function of discrete variables (i.e.,
discrete-time) and the value of the function itself is also discrete, the
signal is said to be digital. Similarly, if a signal is
a function of continuous variables, and the value of the function itself is
also continuous, the signal is said to be analog.
Many phenomena in our physical world can be
described in terms of continuous-time signals. Some examples of continuous-time signals include: voltage or current
waveforms in an electronic circuit; electrocardiograms, speech, and music
recordings; position, velocity, and acceleration of a moving body; forces and torques
in a mechanical system; and flow rates of liquids or gases in a chemical
process. Any signals processed by digital computers (or other digital devices)
are discrete-time in nature. Some examples of discrete-time signals include
digital video, digital photographs, and digital audio data. A discrete-time
signal may be inherently discrete or correspond to a sampled version of a
continuous-time signal. An example of the former would be a signal
corresponding to the Dow Jones Industrial Average stock market index (which is
only defined on daily intervals), while an example of the latter would be the
sampled version of a (continuous-time) speech signal.
·
Notation and Graphical Representation of
Signals
In the case of discrete-time signals, we sometimes refer to the signal as
a sequence. The nth element of a sequence x is denoted as either x(n) or xn. Figure
1.1 shows how continuous-time and discrete-time signals are represented
graphically.
·
Examples of Signals
A number of examples of signals
have been suggested previously. Here, we provide some graphical representations
of signals for illustrative purposes. Figure 1.2 depicts a digitized
speech signal. Figure 1.3 shows an example of a monochromatic image. In
this case, the signal represents light intensity as a function of two variables
(i.e., horizontal and vertical position).
Systems
What is System?
System is a device or combination of devices, which can operate on
signals and produces corresponding response. Input to a system is called as
excitation and output from it is called as Response. For one or more inputs,
the system can have one or more outputs. Example: Communication Systems.
A system is an entity that
processes one or more input signals in order to produce one or more output
signals, as shown in Figure 1.4. Such
an entity is represented mathematically by a system of one or more equations. In
a communication system, the input might represent the message to be sent, and
the output might represent the received message. In a robotics system, the
input might represent the desired position of the end effector (e.g., gripper),
while the output could represent the actual position.
v Classification
of Systems
A system can be classified based on the number of inputs and outputs it
has. A system with only one input is described as single input, while a system
with multiple inputs is described as multi-input. Similarly, a system with only
one output is said to be single output, while a system with multiple outputs is
said to be multi-output. Two commonly occurring types of systems are
single-input single-output (SISO) and multi-input multi-output (MIMO). A system
can also be classified based on the types of signals with which it interacts. A
system that deals with continuous-time signals is called a continuous-time system.
Similarly, a system that deals with discrete-time signals is said to be a
discrete-time system. A system that handles both continuous- and discrete-time
signals, is sometimes referred to as a hybrid system (or sampled-data system).
Similarly, systems that deal with digital signals are referred to as digital,
while systems that handle analog signals are referred to as analog. If a system
interacts with one dimensional signals, the system is referred to as
one-dimensional. Likewise, if a system handles multi-dimensional signals, the
system is said to be multi-dimensional. Systems can manipulate signals in many
different ways and serve many useful purposes. Sometimes systems serve to
extract information from their input signals. For example, in the case of
speech signals, systems can be used in order to perform speaker identification
or voice recognition. A system might analyze electrocardiogram signals in order
to detect heart abnormalities. Amplification and noise reduction are other
functionalities that systems could offer.
· Examples of Systems
Systems can manipulate
signals in many different ways and serve many useful purposes. Sometimes
systems serve to extract information from their input signals. For example, in
the case of speech signals, systems can be used in order to perform speaker
identification or voice recognition. A system might analyze electrocardiogram
signals in order to detect heart abnormalities. Amplification and noise
reduction are other functionalities that systems could offer.
One very basic system is
the resistor-capacitor (RC) network shown in Figure 1.5. Here, the input
would be the source voltage vs and
the output would be the capacitor voltage vc.
Consider the
signal-processing systems shown in Figure 1.6. The system in Figure 1.6(a) uses
a discrete-time system (such as a digital computer) to process a
continuous-time signal. The system in Figure 1.6(b) uses a continuoustime
system (such as an analog computer) to process a discrete-time signal. The
first of these types of systems is ubiquitous in the world today.
Consider the communication
system shown in Figure 1.7. This system takes
a message at one location and reproduces this message at another location. In
this case, the system input is the message to be sent, and the output is the
estimate of the original message. Usually, we want the message reproduced at
the receiver to be as close as possible to the original message sent by the
transmitter.
A system of the
general form shown in Figure 1.8 frequently appears
in control applications. Often, in
such applications, we would like an output to track some reference input as
closely as possible. Consider, for example, a robotics application. The reference
input might represent the desired position of the end effector, while the
output represents the actual position.
Ø 5W+1H SENTENCES
|
No |
5W+1H |
Sentence
Building (Question and Answer) |
|
1 |
Who |
Who is the famous engineers? |
|
Answer |
Fuorier and Laplace |
|
|
2 |
Who |
Who discovered the second
law of dynamics of a rigid body? |
|
Answer |
Isaac Newton |
|
|
3 |
What |
What is Signal |
|
Answer |
Signal is a time varying physical phenomenon which is intended to
convey information |
|
|
4 |
What |
What is Systems |
|
Answer |
Systems is a device or combination of devices, which can operate on signals
and produces corresponding response. |
|
|
5 |
Where |
Where they analyze the
behaviorof physical systems with simple mathematical models? |
|
Answer |
The United States Department
of Defense in 1969, through the ARPA project that developed a network related
to the ARPANET (Advanced Research Project Agency Network), |
|
|
6 |
Where |
Where can we find discrete
time systems and continuous time systems on computers |
|
Answer |
The first of these types of systems is ubiquitous
in the world today.
|
|
|
7 |
Why |
why the design
would proceed by selecting the appropriate resistance R and capacitance C in
the differential equation model of the filter |
|
Answer |
in order to achieve the attenuation
specification |
|
|
8 |
Why |
Why is signals are called discrete variables? |
|
Answer |
If the signal is a function of a
discrete variable (that is, discrete time) and the value of the function
itself is also discrete, the signal is said to be digital. |
|
|
9 |
When |
When did
Isac Newton discovered the second law of rigid-body dynamics |
|
Answer |
It was
discovered for 300 years |
|
|
10 |
When |
When was the ARPANET project
established? |
|
Answer |
The ARPANET project was
founded in 1996 |
|
|
11 |
How |
How is invented the signal? |
|
Answer |
The United States Department of Defense in 1969, through the ARPA
project that developed a network related to the ARPANET (Advanced Research
Project Agency Network), where they demonstrated how to hardware and software
|
|
|
12 |
How |
How do system entities work? |
|
Answer |
that processes one or
more input signals in order to produce one or more output signals |
Ø List
Verbal and Nominal sentences
Verbal Sentences
|
No |
Sentences |
V |
|
01 |
Signal is a function of time. |
|
|
02 |
The evolution of a stock market index over time. |
|
|
03 |
System is a device or combination of devices. |
|
|
04 |
Fantastic advances in these fields have
brought revolutionary changes into our lives |
|
|
05 |
A system of the general
form shown in Figure 1.8 frequently appears in control applications |
|
|
06 |
A system can
be classified based on the number of inputs and outputs it has. |
|
|
07 |
Many phenomena
in our physical world can be described in terms of continuous-time signals |
|
|
08 |
A signal is a
function of one or more variables that conveys information about some (usually physical) phenomenon |
|
|
09 |
Signals can be
classified based on the number of independent variables with which they are
associated |
|
|
10 |
My wish is that the reader will enjoy
learning the theory of signals and systems by using this book |
|
Nominal Sentences
|
No |
Sentences |
N |
|
01 |
Isaac Newton
discovered the second law of rigid-body dynamics over 300 years ago. |
|
|
02 |
The electromagnetic waves used to transmit information in wireless
computer networks. |
|
|
03 |
The development of differential calculus
by Leibniz and Newton provided a powerful tool for modeling physical systems
in the form of differential equations implicitly relating input variable
to the output variable |
|
|
04 |
The study of
signals and systems is considered to be a classic subject in the curriculum
of most engineering schools throughout the world. |
|
|
05 |
A signal
is defined as a function of time representing the evolution of a variable. |
|
|
06 |
This issue is recurrent in the design of
electrical or mechanical systems, where a system’s output signal must
typically respond in an appropriate way to selected input signals |
|
|
07 |
A number of
examples of signals have been suggested previously |
|
|
08 |
Learning
about signals and systems and its applications is often the point at which an
electrical or computer engineering student decides what she or he will
specialize
|
|
|
09 |
Similarly, if a signal is a function of continuous
variables, and the value of the function itself is also continuous, the signal
is said to be analog.
|
|
|
10 |
Such an entity is
represented mathematically by a system of one or more equations |
|
Ø Identify tenses and it’s pattern
|
No |
Sentences |
Pattern |
|
01 |
Isaac Newton discovered the second law of
rigid-body dynamics over 300 years ago. |
Simple past tense (S + Verb II) |
|
02 |
The electromagnetic waves used to transmit
information in wireless computer networks. |
Simple past tense (S + Verb II) |
|
03 |
We have a signal associated with
fluctuations in air pressure as a function of time. |
Simple past tense (S + Verb II) |
|
04 |
Leibniz
developed differential calculus. |
Simple past tense (S + Verb II) |
|
05 |
We provide some
graphical representations of signals for illustrative purposes. |
Simple present tenses (S + Verb I) |
|
06 |
A signal is defined as a function of time
representing the evolution of a variable |
Simple past tense (S + Verb II) |
|
07 |
A signal is a
function of one or more variables that conveys information about some
(usually physical) phenomenon |
Simple present tense (S + Verb I) |
|
08 |
The evolution of a stock market
index over time. |
Simple present tense (S + Verb I ) |
|
09 |
A number of
examples of signals have been suggested previously |
Simple present tense (S + Verb I) |
|
10 |
Signals can be
classified based on the number of independent variables with which they are
associated |
Simple past tense (S + Verb II) |
Ø Change sentences either into active
or passive construction
|
No |
Sentences |
Active |
Passive |
|
1 |
Isaac Newton discovered the second law of
rigid-body dynamics over 300 years ago. |
√ |
|
|
2 |
The second law of rigid body dynamics was
discovered 300 years ago by Isaac Newton. |
|
√ |
|
3 |
Leibniz developed differential calculus. |
√ |
|
|
4 |
Differential calculus developed by Leibniz |
|
√ |
|
5 |
Thermostat
system controlled the temperature. |
√ |
|
|
6 |
The temperature of a room controlled by a thermostat system. |
|
√ |
|
7 |
Electrocardiogram signals might be analyzed by a system in order to detect heart abnormalities. |
|
√ |
|
8 |
We provide some graphical representations of signals for illustrative
purposes. |
√ |
|
|
9 |
A signal is
defined as a function of time representing the evolution of a variable |
|
√ |
|
10 |
A number of examples of signals have been suggested previously |
√ |
|
Ø
List of Vocabulary
|
No |
Vocabulary |
Pronoun Spelling |
Meaning |
|
1 |
Use |
/juːs/ |
Menggunakan |
|
2 |
Work |
/wɜːk/ |
Kerja |
|
3 |
Time |
/taɪm/ |
Waktu |
|
4 |
Send |
/sɛnd/ |
Kirim |
|
5 |
Famous |
/ˈfeɪməs/ |
Terkenal |
|
6 |
Give |
/ɡɪv/ |
Memberi |
|
7 |
Design |
/di’zain/ |
Merancang |
|
8 |
Stock |
/sta:k/ |
Menstok |
|
9 |
Learn |
/lɜːn/ |
Belajar |
|
10 |
Order |
/ˈɔːdə(r)/ |
Pesanan |
Translate
Sinyal dan Sistem
Studi
tentang sinyal dan sistem dianggap sebagai mata pelajaran klasik dalam
kurikulum sebagian besar sekolah teknik di seluruh dunia. Teori sinyal dan
sistem adalah kumpulan hasil matematika yang koheren dan elegan yang berasal
dari karya Fourier dan Laplace serta banyak matematikawan dan insinyur terkenal
lainnya. Teori sinyal dan sistem telah terbukti menjadi alat yang sangat
berharga selama 70 tahun terakhir di banyak bidang sains dan teknik, termasuk
sistem tenaga, kontrol otomatis, komunikasi, desain sirkuit, penyaringan, dan
pemrosesan sinyal. Kemajuan fantastis di bidang ini telah membawa perubahan
revolusioner ke dalam hidup kita. Departemen Pertahanan Amerika Serikat pada
tahun 1969, melalui proyek ARPA yang mengembangkan jaringan yang berhubungan dengan
ARPANET (Advanced Research Project Agency Network), dimana mereka
mendemonstrasikan bagaimana hardware dan software. Inti dari teori sinyal dan
sistem adalah keingintahuan historis umat manusia dan kebutuhan untuk
menganalisis perilaku sistem fisik dengan model matematika sederhana yang
menjelaskan hubungan sebab-akibat antara kuantitas. Misalnya, Isaac Newton
menemukan hukum kedua dinamika benda tegar lebih dari 300 tahun yang lalu dan
menggambarkannya secara matematis sebagai hubungan antara gaya yang dihasilkan
yang diterapkan pada benda (input) dan percepatannya (output), dari mana
seseorang juga dapat mendapatkan kecepatan tubuh dan posisi terhadap waktu.
Pengembangan kalkulus diferensial oleh Leibniz dan Newton menyediakan alat yang
ampuh untuk memodelkan sistem fisik dalam bentuk persamaan diferensial yang
secara implisit menghubungkan variabel masukan dengan variabel keluaran.
Masalah mendasar dalam sains dan teknik adalah memprediksi seperti apa
perilaku, atau respons keluaran, dari suatu sistem untuk sinyal input yang
diberikan. Sementara ilmu pengetahuan berusaha untuk menggambarkan fenomena
alam yang dimodelkan sebagai sistem input-output, teknik berusaha untuk
merancang sistem dengan memodifikasi dan menganalisis model tersebut. Masalah ini
berulang dalam desain sistem kelistrikan atau mekanis, di mana sinyal keluaran
sistem biasanya harus merespons dengan cara yang tepat terhadap sinyal masukan
yang dipilih. Dalam hal ini, model input-output matematis dari sistem akan
dianalisis untuk memprediksi perilaku output sistem. Misalnya, dalam desain
rangkaian listrik resistor-kapasitor sederhana untuk digunakan sebagai filter,
insinyur pertama-tama akan menentukan pelemahan tegangan input sinusoidal yang
diinginkan dari frekuensi tertentu pada output filter. Efek ini disebut respons
frekuensi sistem. Konsep domain frekuensi ini sangat mendasar dalam teknik
kelistrikan, karena mereka mendukung bidang sistem komunikasi, desain filter
analog dan digital, kontrol umpan balik, teknik tenaga, dll. Insinyur listrik
dan komputer yang terlatih dengan baik menganggap sinyal sebagai domain
frekuensi mungkin sama seperti mereka menganggapnya sebagai fungsi waktu.
Transformasi Fourier dapat digeneralisasi lebih lanjut ke transformasi Laplace
dalam waktu kontinu dan transformasi z dalam waktu diskrit. Idenya di sini
adalah untuk mendefinisikan transformasi tersebut bahkan untuk sinyal yang
cenderung tak terhingga dengan waktu. Kami memilih untuk mengadopsi notasi X(
jω), daripada X(ω) atau X( f ), untuk transformasi Fourier dari sinyal waktu
kontinu x(t). Hal ini konsisten dengan transformasi Laplace dari sinyal yang
dilambangkan sebagai X(s), karena itu X(jω) = X(s)|s = jω. Pernyataan yang sama
berlaku untuk transformasi Fourier waktu-diskrit: X(ejω) = X(z)|z = e jω.
Sinyal
Apa itu Sinyal?
Sinyal adalah fenomena fisik yang bervariasi waktu
yang dimaksudkan untuk menyampaikan informasi.
ATAU
Sinyal
adalah fungsi waktu.
ATAU
Sinyal adalah fungsi dari satu atau lebih variabel
independen, yang mengandung beberapa informasi.
Sinyal adalah fungsi dari satu atau lebih variabel
yang menyampaikan informasi tentang beberapa fenomena (biasanya fisik).
Beberapa contoh sinyal antara lain:
• suara
manusia
•
tegangan dalam sirkuit elektronik
• suhu
ruangan yang dikendalikan oleh sistem termostat
• posisi,
kecepatan, dan percepatan pesawat terbang
•
percepatan diukur dengan accelerometer di ponsel
• gaya
yang diukur oleh sensor gaya dalam sistem robot
•
gelombang elektromagnetik yang digunakan untuk mengirimkan informasi dalam
jaringan komputer nirkabel
• foto
digital
• rekaman
musik digital
• evolusi
indeks pasar saham dari waktu ke waktu
v
Klasifikasi Sinyal
Sinyal dapat diklasifikasikan berdasarkan jumlah
variabel independen yang terkait dengannya. Sinyal yang merupakan fungsi dari
satu variabel saja dikatakan satu dimensi. Demikian pula, sinyal yang merupakan
fungsi dari dua atau lebih variabel dikatakan multidimensi. Ucapan manusia
adalah contoh dari sinyal satu dimensi. Dalam hal ini, kami memiliki sinyal
yang terkait dengan fluktuasi tekanan udara sebagai fungsi waktu. Contoh sinyal
dua dimensi adalah gambar monokromatik. Dalam hal ini, kami memiliki sinyal
yang sesuai dengan ukuran intensitas cahaya sebagai fungsi dari posisi
horizontal dan vertikal. Suatu sinyal juga dapat diklasifikasikan berdasarkan
apakah itu fungsi dari variabel kontinu atau diskrit. Sinyal yang merupakan
fungsi dari variabel kontinu (misalnya, variabel nyata) disebut waktu kontinu.
Demikian pula, sinyal yang merupakan fungsi dari variabel diskrit (misalnya,
variabel bilangan bulat) dikatakan sebagai waktu diskrit. Meskipun variabel
independen tidak perlu mewakili waktu, untuk kenyamanan, banyak terminologi
yang dipilih seolah-olah demikian.
x( t)
x[n]
Misalnya, gambar digital (yang terdiri dari susunan
piksel persegi panjang) akan disebut sebagai sinyal waktu diskrit, meskipun
variabel independen (yaitu, posisi horizontal dan vertikal) sebenarnya tidak
sesuai dengan waktu. Jika sebuah sinyal adalah fungsi dari variabel diskrit
(yaitu, waktu diskrit) dan nilai dari fungsi itu sendiri juga diskrit, sinyal
tersebut dikatakan digital. Demikian pula, jika sinyal adalah fungsi dari
variabel kontinu, dan nilai fungsi itu sendiri juga kontinu, sinyal tersebut
dikatakan analog.
Banyak fenomena di dunia fisik kita dapat dijelaskan
dalam bentuk sinyal waktu kontinu. Beberapa contoh sinyal waktu kontinu
meliputi: bentuk gelombang tegangan atau arus dalam sirkuit elektronik; rekaman
elektrokardiogram, ucapan, dan musik; posisi, kecepatan, dan percepatan benda
yang bergerak; gaya dan torsi dalam sistem mekanis; dan laju aliran cairan atau
gas dalam proses kimia. Setiap sinyal yang diproses oleh komputer digital (atau
perangkat digital lainnya) bersifat waktu diskrit. Beberapa contoh sinyal waktu
diskrit meliputi video digital, foto digital, dan data audio digital. Sinyal
waktu-diskrit mungkin secara inheren diskrit atau sesuai dengan versi sampel dari
sinyal waktu-kontinu. Contoh yang pertama adalah sinyal yang sesuai dengan
indeks pasar saham Dow Jones Industrial Average (yang hanya ditentukan pada
interval harian), sedangkan contoh yang terakhir adalah versi sampel dari
sinyal ucapan (waktu berkelanjutan).
• Notasi dan
Representasi Grafis Sinyal
Dalam
kasus sinyal waktu diskrit, terkadang kita menyebut sinyal sebagai urutan.
Elemen ke-n dari suatu barisan x dinotasikan sebagai x(n) atau xn. Gambar 1.1
menunjukkan bagaimana sinyal waktu kontinu dan waktu diskrit direpresentasikan
secara grafis.
• Contoh Sinyal
Sejumlah
contoh sinyal telah disarankan sebelumnya. Di sini, kami menyediakan beberapa
representasi grafis dari sinyal untuk tujuan ilustrasi. Gambar 1.2
menggambarkan sinyal ucapan digital. Gambar 1.3 menunjukkan contoh gambar
monokromatik. Dalam hal ini, sinyal mewakili intensitas cahaya sebagai fungsi
dari dua variabel (yaitu posisi horizontal dan vertikal).
Sistem
Apa itu Sistem?
Sistem adalah perangkat atau kombinasi perangkat,
yang dapat beroperasi pada sinyal dan menghasilkan respons yang sesuai. Input
ke sistem disebut sebagai eksitasi dan output darinya disebut sebagai Respons.
Untuk satu atau lebih input, sistem dapat memiliki satu atau lebih output.
Contoh: Sistem Komunikasi.
Sistem adalah entitas yang memproses satu atau lebih
sinyal input untuk menghasilkan satu atau lebih sinyal output, seperti yang
ditunjukkan pada Gambar 1.4. Entitas seperti itu diwakili secara matematis oleh
sistem satu atau lebih persamaan. Dalam sistem komunikasi, masukan dapat
mewakili pesan yang akan dikirim, dan keluaran dapat mewakili pesan yang
diterima. Dalam sistem robotika, input dapat mewakili posisi yang diinginkan
dari efektor akhir (misalnya, gripper), sedangkan output dapat mewakili posisi
sebenarnya.
·
Klasifikasi Sistem
Suatu sistem dapat diklasifikasikan berdasarkan
jumlah input dan output yang dimilikinya. Sebuah sistem dengan hanya satu input
digambarkan sebagai input tunggal, sedangkan sistem dengan banyak input
digambarkan sebagai multi-input. Demikian pula, sebuah sistem dengan hanya satu
output dikatakan single output, sedangkan sistem dengan banyak output dikatakan
multi-output. Dua jenis sistem yang umum terjadi adalah single-input
single-output (SISO) dan multi-input multi-output (MIMO). Suatu sistem juga
dapat diklasifikasikan berdasarkan jenis sinyal yang berinteraksi dengannya.
Suatu sistem yang berurusan dengan sinyal waktu kontinu disebut sistem waktu
kontinu. Demikian pula, sistem yang berhubungan dengan sinyal waktu diskrit
dikatakan sebagai sistem waktu diskrit. Suatu sistem yang menangani sinyal
waktu kontinu dan diskrit, kadang-kadang disebut sebagai sistem hibrid (atau
sistem data sampel). Demikian pula, sistem yang menangani sinyal digital
disebut digital, sedangkan sistem yang menangani sinyal analog disebut analog.
Jika suatu sistem berinteraksi dengan sinyal satu dimensi, sistem tersebut
disebut sebagai satu dimensi. Demikian juga, jika suatu sistem menangani sinyal
multidimensi, sistem tersebut dikatakan multidimensi. Sistem dapat memanipulasi
sinyal dengan berbagai cara dan melayani banyak tujuan yang berguna. Terkadang
sistem berfungsi untuk mengekstraksi informasi dari sinyal inputnya. Misalnya,
dalam hal sinyal ucapan, sistem dapat digunakan untuk melakukan identifikasi
pembicara atau pengenalan suara. Suatu sistem mungkin menganalisis sinyal
elektrokardiogram untuk mendeteksi kelainan jantung. Amplifikasi dan
pengurangan noise adalah fungsi lain yang dapat ditawarkan sistem.
• Contoh
Sistem
Sistem dapat memanipulasi sinyal dengan berbagai
cara dan melayani banyak tujuan yang berguna. Terkadang sistem berfungsi untuk
mengekstraksi informasi dari sinyal inputnya. Misalnya, dalam hal sinyal
ucapan, sistem dapat digunakan untuk melakukan identifikasi pembicara atau pengenalan
suara. Suatu sistem mungkin menganalisis sinyal elektrokardiogram untuk
mendeteksi kelainan jantung. Amplifikasi dan pengurangan noise adalah fungsi
lain yang dapat ditawarkan sistem.
Salah satu sistem yang sangat mendasar adalah jaringan
resistor-kapasitor (RC) yang ditunjukkan pada Gambar 1.5. Di sini, inputnya
adalah tegangan sumber vs dan outputnya adalah tegangan kapasitor vc.
Pertimbangkan sistem pemrosesan sinyal yang
ditunjukkan pada Gambar 1.6. Sistem pada Gambar 1.6(a) menggunakan sistem waktu
diskrit (seperti komputer digital) untuk memproses sinyal waktu kontinu. Sistem
pada Gambar 1.6(b) menggunakan sistem waktu kontinu (seperti komputer analog)
untuk memproses sinyal waktu diskrit. Yang pertama dari jenis sistem ini ada di
mana-mana di dunia saat ini.
Pertimbangkan sistem komunikasi yang ditunjukkan
pada Gambar 1.7. Sistem ini mengambil pesan di satu lokasi dan mereproduksi
pesan ini di lokasi lain. Dalam hal ini, masukan sistem adalah pesan yang akan
dikirim, dan keluarannya adalah perkiraan pesan asli. Biasanya, kami ingin
pesan yang direproduksi di penerima sedekat mungkin dengan pesan asli yang
dikirim oleh pemancar.
Suatu sistem dengan bentuk umum yang ditunjukkan
pada Gambar 1.8 sering muncul dalam aplikasi kontrol. Seringkali, dalam
aplikasi seperti itu, kami menginginkan keluaran untuk melacak beberapa masukan
referensi sedekat mungkin. Pertimbangkan, misalnya, aplikasi robotika. Input
referensi mungkin mewakili posisi yang diinginkan dari efektor akhir, sedangkan
output mewakili posisi sebenarnya.
Author's Message
My
wish is that the reader will enjoy learning the theory of signals and systems
by using this book. One of my goals is to present the theory in a direct and
straightforward manner. Another goal is to instill interest in different areas
of specialization of electrical and computer engineering
EDITORIAL SKILL IN ENGLISH PUBLIPRENEUR-BASED LANGUAGE LEARNING
(PBLL-Editing)
|
INSTRUCTIONS |
|||||||||
|
1.
Use the red ink pen to mark
your editorial findings 2.
Write the name
of the manuscript’s writer
within the box 3.
Write your name
as an editor
within the editor’s box 4.
Write the title
of the manuscript 5.
Treat the draft
as an accepted manuscript to the Editorial
Department. 6.
Edit the manuscript by using the editorial
signs 7.
Put the
number of your editorial findings (mechanical, substantive, pictorial) within the box right- side 8.
Write your verbal
verification of suggestion,
comment, or input for the improvement of the manuscript. 9.
Give your editorial judgment about the manuscript from the perspective of prewriting,
drafting, revising, editing, publishing, marketing, and delivering) 10.
Good Luck..be
your best. |
|||||||||
|
Students’ Identity |
Writer |
Editor |
|||||||
|
Name |
Willy Riwaldi |
Irfandi Bagus Fahrezi |
|||||||
|
Study Program |
Electrical Engineering |
Electrical Engineering |
|||||||
|
Title of Manuscript |
Why do countries have different Signal and Systems? |
||||||||
|
C=Competence : NC= Non Competence |
|||||||||
|
No |
Editorial Findings |
Number |
Key Word |
C |
NC |
||||
|
A |
Mechanical Editing |
|
|
|
types |
||||
|
|
·
Types |
- |
- |
- |
- |
||||
|
|
·
Words |
- |
- |
- |
phrase |
||||
|
|
·
Phrase |
- |
- |
- |
- |
||||
|
|
·
Clause |
- |
- |
- |
- |
||||
|
|
·
Punctuations |
- |
- |
- |
- |
||||
|
|
·
Comma |
- |
- |
- |
|||||
|
|
·
Colon |
- |
- |
- |
- |
||||
|
|
·
Semi Colon |
- |
- |
- |
- |
||||
|
|
·
Preposition |
- |
- |
- |
- |
||||
|
|
·
Dictions |
- |
- |
- |
- |
||||
|
B |
Substantive Editing |
|
|
|
|
||||
|
|
·
Content Accuracy |
- |
- |
- |
- |
||||
|
|
·
Language Consistency |
- |
- |
- |
- |
||||
|
|
·
Message Originality |
- |
- |
- |
- |
||||
|
|
·
Reader’s Interest |
- |
- |
- |
- |
||||
|
|
·
Coherence |
- |
- |
- |
- |
||||
|
C |
Pictorial Editing |
|
|
|
|
||||
|
|
·
Harmony |
- |
- |
- |
- |
||||
|
|
·
Balancing |
- |
- |
- |
- |
||||
|
|
·
White Space |
- |
- |
- |
- |
||||
|
|
·
Color |
- |
- |
- |
- |
|||
|
Verbal Verification: There are several author
errors in writing, namely the wrong placement of spaces and the use of capital letters.
|
||||||||
|
Editorial Judgment
I think the sentence-by-sentence that the author
wrote is very good and very easy to understand for
readers to read,
but in writing, there are some words that
I need to
improve, such as example, describing, rigid body, etc. but overall I appreciate the author in choosing sentence by sentence. |
||||||||
QUESTIONERS OF PUBLIPRENEUR-BASED LANGUAGE
LEARNING (PBLL) USED TO TEACH ENGLISH FOR SPECIFIC PURPOSES OF
ELECTRO ENGINEERING
AT MUHAMMADIYAH UNIVERSITY
|
Name |
Willy Riwaldi |
||||
|
Study Program |
Electrical Engineering |
||||
|
Lecturer |
Dr. Zalzulifa, M.Pd |
||||
|
No |
Questioners |
Much (M); Enough (E); Less (L) |
Reasons |
||
|
M |
E |
L |
|||
|
1 |
How far do you know about
the concept of the Publipreneur-Based Language Learning (PBLL) approach in language teaching |
√ |
|
|
The application of Problem-Based Learning in Physical Therapy courses begins by raising real cases that students face when implementing them. After selecting one case, then a theoretical study of the case was carried out both from textbooks and from the results of a study of similar cases. The internet can be a means which is very helpful. Cases that have been completed with theoretical studies are then presented for criticism in terms of the accuracy of diagnosis, effectiveness of therapy, and continuation of rehabilitation. required readiness of all discussion participants to listen, reflect and express logically and systematically. |
|
2 |
Do you think
that the Publipreneur-Based Language Learning (PBLL) approach applicable used to teach English for Specific Purposes
(ESP) |
√ |
|
|
Yes of course, in addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and lifelong learning. |
|
3 |
How far does Publipreneur-Based Language Learning (PBLL) influence your English Reading skill
in Electro Engineering Business |
|
√ |
|
Pretty good, but I'm still a little difficult to understand how many words and accent pronunciation. |
|
4 |
How far does Publipreneur-Based Language Learning (PBLL) influence your English Writing skill in Electro Engineering Business |
|
√ |
|
Maybe the influence is quite big because in today's modern era computers allow large amounts of information and of course can facilitate trends as a means of learning. It can also provide instant feedback to learners to improve their writing skills. |
|
5 |
How far
does Publipreneur-Based Language
Learning (PBLL) influence your
English Listening skill in Electro Engineering Business |
|
√ |
|
Quite helpful because there are so many factors that affect us besides studying Publippreneur-Based Language Learning (PBLL). such as motivation, attitude, age, intelligence, talent, cognitive style, and personality are considered factors that greatly influence a person in the process of mastering his second language. |
|
6 |
How far does Publipreneur-Based Language
Learning (PBLL) influence your
English Speaking skill in Electro Engineering Business |
|
√ |
|
Very lacking, because I often stammer when speaking english. |

0 Komentar:
Posting Komentar
Berlangganan Posting Komentar [Atom]
<< Beranda